ISSN 1600-5368

[N,N'-(1,2-Diphenvlethane-1,2-divl)bis(pyridine-2-carboxamidato)]nickel(II) diethyl ether hemisolvate

Li Yang, Dong-Yan Deng, Mei Li and Xiang-Ge Zhou*

Institute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064 People's Republic of China Correspondence e-mail: scuzhouxg@163.com

Received 19 November 2007; accepted 25 January 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.059; wR factor = 0.163; data-toparameter ratio = 18.7.

In the title compound, $[Ni(C_{26}H_{20}N_4O_2)] \cdot 0.5C_4H_{10}O$, the central metal ion is coordinated by four atoms of the tetradentate picolinamide ligand, forming a slightly distorted square-planar configuration, with an average Ni-N(pyridine) distance of 1.94 Å and an average Ni-N(amide) distance of 1.83 Å. The asymmetric unit contains one half-molecule of diethyl ether: this solvent molecule is disordered across a twofold rotation axis..

Related literature

For related literature, see: Barnes et al. (1981); Doukov et al. (2002); Fenton et al. (1991); Halcrow et al. (1994); Mulqi et al. (1981); Yang et al. (2007).

1/2 C2H5OC2H5

Experimental

Crystal data [Ni(C26H20N4O2)]·0.5C4H10O $M_r = 516.23$

Monoclinic, C2 a = 21.838 (3) Å b = 11.1675 (15) Åc = 11.0443 (15) Å $\beta = 100.949 \ (3)^{\circ}$ V = 2644.5 (6) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	12577 measured reflections
diffractometer	6078 independent reflections
Absorption correction: multi-scan	3405 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.067$
$T_{\min} = 0.879, T_{\max} = 0.956$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.162$	$\Delta \rho_{\rm max} = 0.82 \text{ e} \text{ Å}^{-3}$
S = 1.01	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$
6078 reflections	Absolute structure: Flack (1983),
325 parameters	2840 Friedel pairs
17 restraints	Flack parameter: 0.03 (2)

Table 1 Selected bond lengths (Å).

Ni1-N3	1.8227 (13)	Ni1-N2	1.9410 (17)
Ni1-N1	1.8349 (17)	Ni1-N4	1.9527 (17)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was sponsored by the NSFC (grant Nos. 20672075, 20771076) and the Student Innovation Foundation of Sichuan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AV2001).

References

- Barnes, D. J., Chapman, R. L. F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 51, 155-162.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Doukov, T. I., Iverson, T. M., Seravalli, J., Ragsdale, S. W. & Drennan, C. L. (2002). Science, 298, 567-572.
- Fenton, R. R., Stephens, F. S. & Vagg, R. S. (1991). J. Coord. Chem. 23, 291-311.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Halcrow, M. A., Christou, G., Halcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421-2481.
- Mulqi, M., Stephens, F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 52, 73-77.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A: Chem. 266, 284-289.

Mo $K\alpha$ radiation $\mu = 0.77 \text{ mm}^{-1}$

 $0.38 \times 0.14 \times 0.06$ mm

T = 294 (2) K

Acta Cryst. (2008). E64, m439 [doi:10.1107/S1600536808002882]

[*N*,*N*'-(1,2-Diphenylethane-1,2-diyl)bis(pyridine-2-carboxamidato)]nickel(II) diethyl ether hemisolvate

L. Yang, D.-Y. Deng, M. Li and X.-G. Zhou

Comment

Nickel exists in organism as a trace element and it often acts as component or secondary factor of enzyme (Doukov *et al.*, 2002). In the latest two decades, the coordination chemistry of nickel has made a great progress (Halcrow *et al.*, 1994). On the other hand, pyridine carboxamides, being a burgeoning class of multidentate ligands, are available easily from condensation reactions of pyridine carboxylic acid and amine. Continuing of our study in the synthesis and application of complexes containing picolinamide ligands in catalysis (Yang *et al.*, 2007), herein is reported the crystal structure of Ni(II) with chiral pyridine carboxamide ligand, 1,2-bis(2-pyridinecarboxamido)-1,2-diphenylethane(*s,s*-bpdpeH₂).

Selected bond lengths and angles in the title compound are listed in Table 1. Figure 1 shows a perspective drawing of the molecule with atom labeling. In the title compound, there is one solvent ether molecules per two complex molecules. X-Ray crystallography revealed that the nickel ion coordinates with the four nitrogen atoms of picolinamide ligand with Ni–N bond distances ranging from 1.8227 (13) to 1.9527 (17) Å. The sum of the four N—Ni—N angles is 360.48°. The dihedral angle between the two pyridyl rings is less than 2°, the Ni(II) ion seems to form a slightly distorted square plane configuration. Furthermore, the Ni—N(amide) distances are shorter than the Ni—N(pyridine) distances, which is similar with the reported complex such as [Ni(bcph)](H₂bpch=1, 2-bis(2-pyridinecarboxamido)-1, 2- cyclohexane) with Ni—N(amide)=1.87 Å and Ni—N(pyridine)=1.94 Å (Mulqi *et al.*, 1981).

Experimental

The ligand was prepared by a previously described method (Fenton *et al.*, 1991). The title complex was obtained analogous to (Barnes *et al.*, 1981). Single crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a DMF solution of the complex. Selected IR data (KBr, cm⁻¹): 2980 (*m*), 1650 (amide I band, s), 1610(amide II band, s), 1470 (*s*), 1360 (*s*), 1120(*s*), 1020 (*m*), 870 (*m*). Analysis calculated for $C_{26}H_{20}N_4NiO_2$: C 65.17, H 4.21, N 11.69%; found: C 65.23, H 4.43, N 11.54%. MS (FAB): 479([Ni(bpdpe)]⁺).

Refinement

All H atoms of the complex were positioned geometrically and refined as riding, with C—H = 0.93 Å(aromatic) and 0.98 Å(methylene) with $U_{iso}(H) = 1.2Ueq$ (aromatic, methylene).

When solvent disorder was treated, there are 4 larger electron density peaks in different electron density map (Fourier synthesis). And two peaks are located on special positions. These special positions are considered as disorder oxygen atom of ether, O3 and O3'. When these peaks are grown, the whole ether molecule was got. O3 and O3' have occupancy factor as 0.5 defined by special position.

Figures

Fig. 1. 1 A view of $[Ni(C_{26}H_{20}N_4O_2)]$.1/2($C_2H_5OC_2H_5$), with displacement ellipsoids drawn at the 30% propability level.

[N,N'-(1,2-Diphenylethane-1,2-diyl)bis(pyridine-2-carboxamidato)]nickel(II) diethyl ether hemisolvate

Crystal data	
$[Ni(C_{26}H_{20}N_4O_2)] \cdot 0.5C_4H_{10}O$	$F_{000} = 1076$
$M_r = 516.23$	$D_{\rm x} = 1.297 {\rm ~Mg~m}^{-3}$
Monoclinic, C2	Mo K α radiation $\lambda = 0.71073$ Å
a = 21.838 (3) Å	Cell parameters from 4983 reflections
<i>b</i> = 11.1675 (15) Å	$\theta = 1 - 27.5^{\circ}$
c = 11.0443 (15) Å	$\mu = 0.77 \text{ mm}^{-1}$
$\beta = 100.949 \ (3)^{\circ}$	T = 294 (2) K
V = 2644.5 (6) Å ³	Needle, green
Z = 4	$0.38 \times 0.14 \times 0.06 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	6078 independent reflections

diffractometer	· · · · · · · · · · · · · · · · · · ·
Radiation source: fine-focus sealed tube	3405 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.067$
T = 294(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -28 \rightarrow 28$
$T_{\min} = 0.879, \ T_{\max} = 0.956$	$k = -14 \rightarrow 14$
12577 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.162$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.067P)^2]$ and $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.007$

<i>S</i> = 1.01	$\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$
6078 reflections	$\Delta \rho_{\rm min} = -0.43 \ e \ {\rm \AA}^{-3}$
325 parameters	Extinction correction: none
17 restraints	Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.03 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes..

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ni1	0.685445 (11)	0.41062 (2)	0.575362 (19)	0.03992 (6)	
01	0.68109 (9)	0.75302 (12)	0.48680 (13)	0.0649 (6)	
O2	0.71735 (10)	0.29814 (15)	0.91975 (14)	0.0807 (7)	
N1	0.69128 (8)	0.57385 (15)	0.59271 (15)	0.0448 (6)	
N2	0.67548 (8)	0.44546 (14)	0.40053 (15)	0.0463 (6)	
N3	0.70417 (7)	0.41280 (19)	0.74336 (12)	0.0404 (4)	
N4	0.67459 (9)	0.23904 (15)	0.59807 (15)	0.0472 (6)	
C1	0.73171 (10)	0.52214 (17)	0.80298 (19)	0.0427 (6)	
H1	0.7199	0.5305	0.8839	0.051*	
C2	0.70105 (11)	0.62494 (17)	0.71610 (18)	0.0437 (7)	
H2	0.7313	0.6904	0.7202	0.052*	
C3	0.68186 (11)	0.64212 (19)	0.49332 (19)	0.0501 (7)	
C4	0.67389 (11)	0.56614 (19)	0.37879 (19)	0.0455 (7)	
C5	0.66656 (13)	0.6111 (2)	0.2626 (2)	0.0642 (9)	
Н5	0.6622	0.6933	0.2506	0.077*	
C6	0.66545 (15)	0.5382 (2)	0.1635 (2)	0.0763 (10)	
Н6	0.6618	0.5691	0.0843	0.092*	
C7	0.66992 (12)	0.4171 (3)	0.18509 (18)	0.0763 (8)	
H7	0.6700	0.3642	0.1201	0.092*	
C8	0.67431 (12)	0.37406 (18)	0.30362 (19)	0.0579 (8)	
H8	0.6765	0.2917	0.3163	0.069*	
C9	0.70290 (12)	0.3139 (2)	0.8047 (2)	0.0528 (8)	
C10	0.68154 (12)	0.21015 (19)	0.7192 (2)	0.0480 (7)	
C11	0.67415 (14)	0.0961 (2)	0.7604 (2)	0.0704 (9)	
H11	0.6793	0.0798	0.8443	0.084*	

C12	0 (5907 (14)	0.00(0.(2))	0(752(2))	0.0777(10)	
C12	0.65897 (14)	0.0069 (2)	0.6752 (2)	0.0777 (10)	
H12	0.6520	-0.0704	0.7008	0.093*	
C13	0.65399 (16)	0.0315 (2)	0.5531 (3)	0.0847 (11)	
H13	0.6464	-0.0294	0.4947	0.102*	
C14	0.66052 (14)	0.1488 (2)	0.5177 (2)	0.0718 (10)	
H14	0.6549	0.1660	0.4339	0.086*	
C15	0.80143 (10)	0.52376 (17)	0.81812 (17)	0.0390 (6)	
C16	0.83346 (10)	0.45226 (18)	0.74753 (19)	0.0507 (7)	
H16	0.8115	0.4001	0.6894	0.061*	
C17	0.89797 (11)	0.4584 (2)	0.7635 (2)	0.0614 (8)	
H17	0.9189	0.4098	0.7163	0.074*	
C18	0.93127 (12)	0.5359 (2)	0.8487 (2)	0.0700 (10)	
H18	0.9745	0.5400	0.8592	0.084*	
C19	0.90017 (11)	0.6058 (2)	0.9169 (2)	0.0680 (9)	
H19	0.9224	0.6580	0.9747	0.082*	
C20	0.83604 (11)	0.60110 (19)	0.9019 (2)	0.0579 (8)	
H20	0.8157	0.6509	0.9492	0.070*	
C21	0.64296 (11)	0.67357 (18)	0.7536 (2)	0.0484 (7)	
C22	0.64900 (12)	0.7353 (2)	0.86491 (19)	0.0651 (9)	
H22	0.6886	0.7457	0.9124	0.078*	
C23	0.59732 (12)	0.7826 (3)	0.9082 (2)	0.0837 (10)	
H23	0.6023	0.8222	0.9835	0.100*	
C24	0.54060 (14)	0.7686 (3)	0.8374 (2)	0.1052 (12)	
H24	0.5060	0.7988	0.8649	0.126*	
C25	0.53215 (14)	0.7107 (3)	0.7252 (3)	0.1189 (15)	
H25	0.4926	0.7042	0.6766	0.143*	
C26	0.58374 (12)	0.6620 (3)	0.6855 (3)	0.0820 (11)	
H26	0.5779	0.6207	0.6110	0.098*	
C28	0.5081 (3)	0.3730 (6)	0.7884 (4)	0.364 (3)	
H28A	0.5451	0.3351	0.7625	0.545*	
H28B	0.4932	0.4332	0.7310	0.545*	
H28C	0.4779	0.3102	0.7870	0.545*	
C27	0.5289 (3)	0.4225 (3)	0.9168 (4)	0.251 (3)	
H27A	0.5430	0.3517	0.9655	0.301*	
H27B	0.5654	0.4671	0.9113	0.301*	
03	0.5000	0.4919 (6)	1.0000	0.219 (6)	0.50
O3'	0.5000	0.3518 (7)	1.0000	0.380 (6)	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.06559 (13)	0.02383 (9)	0.03095 (10)	0.00039 (17)	0.01070 (9)	0.00210 (15)
01	0.1240 (13)	0.0250 (8)	0.0457 (9)	0.0052 (9)	0.0160 (9)	0.0088 (7)
O2	0.1566 (16)	0.0453 (9)	0.0339 (8)	-0.0197 (11)	0.0019 (10)	0.0124 (8)
N1	0.0760 (12)	0.0243 (8)	0.0353 (9)	0.0007 (9)	0.0135 (9)	0.0004 (7)
N2	0.0710 (11)	0.0316 (10)	0.0374 (9)	0.0087 (8)	0.0134 (8)	0.0049 (7)
N3	0.0659 (9)	0.0242 (6)	0.0322 (7)	0.0023 (13)	0.0121 (6)	0.0067 (11)
N4	0.0769 (13)	0.0262 (9)	0.0393 (9)	-0.0040 (9)	0.0135 (9)	-0.0007 (8)

C1	0.0740 (14)	0.0244 (9)	0.0277 (10)	-0.0028 (10)	0.0046 (10)	-0.0016 (8)
C2	0.0765 (14)	0.0247 (10)	0.0303 (10)	-0.0015 (10)	0.0116 (10)	-0.0004 (9)
C3	0.0876 (16)	0.0279 (10)	0.0345 (11)	-0.0060 (11)	0.0106 (11)	0.0093 (9)
C4	0.0681 (14)	0.0292 (10)	0.0391 (11)	0.0008 (10)	0.0100 (11)	0.0042 (9)
C5	0.1020 (19)	0.0462 (14)	0.0438 (13)	0.0003 (14)	0.0126 (13)	0.0142 (11)
C6	0.155 (2)	0.0498 (14)	0.0255 (11)	-0.0059 (16)	0.0196 (14)	0.0090 (11)
C7	0.1395 (19)	0.0557 (13)	0.0351 (10)	0.003 (2)	0.0202 (12)	-0.0076 (17)
C8	0.1057 (18)	0.0313 (12)	0.0371 (11)	0.0017 (11)	0.0143 (12)	-0.0059 (9)
C9	0.0805 (16)	0.0366 (11)	0.0392 (12)	-0.0092 (12)	0.0064 (12)	0.0019 (11)
C10	0.0764 (15)	0.0277 (10)	0.0385 (11)	-0.0036 (11)	0.0071 (11)	0.0032 (10)
C11	0.126 (2)	0.0362 (12)	0.0477 (14)	-0.0156 (14)	0.0135 (15)	0.0124 (11)
C12	0.138 (2)	0.0313 (12)	0.0627 (16)	-0.0212 (15)	0.0159 (16)	0.0045 (12)
C13	0.164 (3)	0.0283 (12)	0.0686 (17)	-0.0175 (16)	0.0389 (17)	-0.0009 (12)
C14	0.130 (2)	0.0402 (13)	0.0430 (14)	-0.0073 (16)	0.0109 (15)	-0.0037 (12)
C15	0.0572 (13)	0.0281 (10)	0.0299 (10)	0.0041 (10)	0.0038 (10)	0.0008 (9)
C16	0.0786 (15)	0.0347 (11)	0.0374 (11)	0.0045 (11)	0.0078 (11)	-0.0029 (9)
C17	0.0718 (16)	0.0565 (15)	0.0536 (14)	0.0109 (12)	0.0061 (13)	-0.0005 (12)
C18	0.0674 (16)	0.0630 (16)	0.0749 (18)	0.0069 (15)	0.0016 (15)	0.0033 (15)
C19	0.0727 (17)	0.0471 (14)	0.0736 (18)	-0.0122 (13)	-0.0130 (15)	-0.0155 (13)
C20	0.0940 (18)	0.0326 (11)	0.0450 (12)	-0.0006 (13)	0.0075 (13)	-0.0119 (10)
C21	0.0674 (14)	0.0300 (11)	0.0467 (12)	0.0131 (11)	0.0082 (11)	-0.0017 (10)
C22	0.1067 (19)	0.0447 (14)	0.0461 (13)	0.0150 (14)	0.0198 (13)	-0.0005 (12)
C23	0.134 (2)	0.0629 (16)	0.0640 (15)	0.0292 (17)	0.0439 (14)	0.0049 (14)
C24	0.111 (2)	0.134 (3)	0.0792 (18)	0.0655 (19)	0.0387 (15)	0.0075 (19)
C25	0.081 (2)	0.149 (3)	0.126 (3)	0.053 (2)	0.017 (2)	-0.004 (3)
C26	0.0860 (19)	0.091 (2)	0.0678 (18)	0.0157 (17)	0.0106 (16)	-0.0138 (16)
C28	0.301 (5)	0.388 (7)	0.344 (7)	-0.243 (5)	-0.087 (6)	0.170 (6)
C27	0.293 (6)	0.249 (7)	0.188 (5)	0.067 (7)	-0.011 (5)	-0.015 (6)
O3	0.167 (8)	0.173 (9)	0.306 (14)	0.000	0.022 (9)	0.000
O3'	0.382 (16)	0.400 (3)	0.398 (3)	-0.26 (2)	0.176 (13)	-0.13 (4)

Geometric parameters (Å, °)

Ni1—N3	1.8227 (13)	C13—C14	1.383 (4)
Ni1—N1	1.8349 (17)	С13—Н13	0.9300
Ni1—N2	1.9410 (17)	C14—H14	0.9300
Ni1—N4	1.9527 (17)	C15—C20	1.381 (3)
O1—C3	1.241 (3)	C15—C16	1.394 (3)
O2—C9	1.263 (3)	C16—C17	1.388 (3)
N1—C3	1.320 (3)	C16—H16	0.9300
N1—C2	1.455 (3)	C17—C18	1.380 (3)
N2—C8	1.331 (3)	C17—H17	0.9300
N2C4	1.368 (3)	C18—C19	1.354 (4)
N3—C9	1.298 (3)	C18—H18	0.9300
N3—C1	1.461 (3)	C19—C20	1.380 (3)
N4-C14	1.339 (3)	C19—H19	0.9300
N4-C10	1.357 (3)	C20—H20	0.9300
C1—C15	1.500 (3)	C21—C26	1.373 (3)
C1—C2	1.563 (3)	C21—C22	1.393 (3)

C1—H1	0.9800	C22—C23	1.409 (4)
C2—C21	1.509 (3)	С22—Н22	0.9300
С2—Н2	0.9800	C23—C24	1.342 (4)
C3—C4	1.506 (3)	С23—Н23	0.9300
C4—C5	1.359 (3)	C24—C25	1.378 (4)
C5—C6	1.361 (3)	C24—H24	0.9300
С5—Н5	0.9300	C25—C26	1.395 (4)
C6—C7	1.373 (4)	С25—Н25	0.9300
С6—Н6	0.9300	С26—Н26	0.9300
С7—С8	1.381 (3)	C28—C27	1.510 (6)
С7—Н7	0.9300	C28—H28A	1.0002
С8—Н8	0.9300	C28—H28B	0.9388
C9—C10	1.511 (3)	C28—H28C	0.9612
C10—C11	1.372 (3)	C27—O3	1.436 (6)
C11—C12	1.366 (3)	С27—Н27А	0.9730
C11—H11	0.9300	С27—Н27В	0.9523
C12—C13	1.360 (4)	O3—C27 ⁱ	1.436 (6)
С12—Н12	0.9300		
N3—Ni1—N1	83.26 (8)	C13—C12—H12	120.0
N3—Ni1—N2	166.18 (8)	C11—C12—H12	120.0
N1—Ni1—N2	84.10 (7)	C12—C13—C14	118.6 (2)
N3—Ni1—N4	83.78 (8)	С12—С13—Н13	120.7
N1—Ni1—N4	165.74 (8)	C14—C13—H13	120.7
N2—Ni1—N4	109.33 (7)	N4—C14—C13	123.3 (2)
C3—N1—C2	121.62 (17)	N4—C14—H14	118.4
C3—N1—Ni1	119.35 (14)	C13—C14—H14	118.4
C2—N1—Ni1	118.83 (13)	C20—C15—C16	117.7 (2)
C8—N2—C4	116.94 (17)	C20—C15—C1	119.79 (19)
C8—N2—Ni1	131.39 (14)	C16—C15—C1	122.51 (17)
C4—N2—Ni1	111.49 (13)	C17—C16—C15	120.40 (19)
C9—N3—C1	121.56 (15)	С17—С16—Н16	119.8
C9—N3—Ni1	119.77 (16)	С15—С16—Н16	119.8
C1—N3—Ni1	117.61 (14)	C18—C17—C16	120.5 (2)
C14—N4—C10	116.33 (19)	С18—С17—Н17	119.7
C14—N4—Ni1	132.16 (16)	С16—С17—Н17	119.7
C10—N4—Ni1	111.49 (13)	C19—C18—C17	119.1 (2)
N3—C1—C15	112.49 (17)	C19—C18—H18	120.4
N3—C1—C2	104.21 (15)	С17—С18—Н18	120.4
C15—C1—C2	111.53 (18)	C18—C19—C20	121.1 (2)
N3—C1—H1	109.5	С18—С19—Н19	119.5
C15—C1—H1	109.5	С20—С19—Н19	119.5
C2—C1—H1	109.5	C19—C20—C15	121.2 (2)
N1—C2—C21	114.66 (17)	С19—С20—Н20	119.4
N1—C2—C1	104.85 (16)	С15—С20—Н20	119.4
C21—C2—C1	112.35 (18)	C26—C21—C22	116.8 (2)
N1—C2—H2	108.2	C26—C21—C2	124.7 (2)
С21—С2—Н2	108.2	C22—C21—C2	118.5 (2)
C1—C2—H2	108.2	C21—C22—C23	122.5 (2)

O1—C3—N1	128.5 (2)	C21—C22—H22	118.8
O1—C3—C4	121.05 (19)	С23—С22—Н22	118.8
N1—C3—C4	110.37 (18)	C24—C23—C22	118.0 (3)
C5—C4—N2	121.6 (2)	С24—С23—Н23	121.0
C5—C4—C3	124.0 (2)	С22—С23—Н23	121.0
N2—C4—C3	114.37 (18)	C23—C24—C25	121.9 (3)
C4—C5—C6	121.3 (2)	C23—C24—H24	119.0
C4—C5—H5	119.4	C25—C24—H24	119.0
С6—С5—Н5	119.4	C24—C25—C26	119.2 (3)
C5—C6—C7	117.4 (2)	С24—С25—Н25	120.4
С5—С6—Н6	121.3	С26—С25—Н25	120.4
С7—С6—Н6	121.3	C21—C26—C25	121.6 (3)
C6—C7—C8	119.8 (2)	C21—C26—H26	119.2
С6—С7—Н7	120.1	C25—C26—H26	119.2
С8—С7—Н7	120.1	C27—C28—H28A	108.0
N2-C8-C7	122.8 (2)	C27—C28—H28B	112.0
N2-C8-H8	118.6	H28A-C28-H28B	107.9
C7 - C8 - H8	118.6	$C_{27} - C_{28} - H_{28}C$	111.4
02 - 09 - N3	128.2 (2)	H_{28}^{-} $H_{$	106.1
02 - 09 - 010	120.2(2) 120.6(2)	H28B_C28_H28C	111.2
$N_{3} - C_{9} - C_{10}$	111 19 (18)	03-027-028	135.1 (5)
$N_{4} = C_{10} = C_{10}$	122.2 (2)	$O_{3} = C_{27} = C_{28}$	102.5
N4 C10 C0	123.3(2) 112.38(10)	C_{2}^{2} C_{2}^{2} H_{2}^{2}	102.5
11 - 10 - 0	113.30 (19)	$C_{20} = C_{27} = H_{27} R$	103.2
C12 - C11 - C10	123.2(2)	C_2° C_2° L_2° L_2° L_2° C_2° L_2° L_2° C_2° L_2° C_2° L_2° L_2° L_2° C_2° L_2° $L_2^$	103.0
C12 - C11 - C10	118.5 (2)	$C_{20} - C_{27} - H_{27} B$	105.7
	120.7	H2/A-C2/-H2/B	106.1
C10—C11—H11	120.7	$C27-O3-C27^{1}$	114.7 (6)
C13—C12—C11	119.9 (2)		
N3—Ni1—N1—C3	-179.99 (19)	C4—C5—C6—C7	2.1 (4)
N2—Ni1—N1—C3	5.60 (18)	C5—C6—C7—C8	1.0 (4)
N4—Ni1—N1—C3	-155.1 (3)	C4—N2—C8—C7	-1.8 (4)
N3—Ni1—N1—C2	-5.08 (16)	Ni1—N2—C8—C7	-176.47 (19)
N2—Ni1—N1—C2	-179.49 (17)	C6—C7—C8—N2	-1.2 (4)
N4—Ni1—N1—C2	19.8 (4)	C1—N3—C9—O2	8.3 (4)
N3—Ni1—N2—C8	147.3 (3)	Ni1—N3—C9—O2	176.2 (2)
N1—Ni1—N2—C8	171.2 (2)	C1—N3—C9—C10	-171.00 (19)
N4—Ni1—N2—C8	-13.7 (2)	Ni1—N3—C9—C10	-3.1 (3)
N3—Ni1—N2—C4	-27.6 (4)	C14—N4—C10—C11	-0.8 (4)
N1—Ni1—N2—C4	-3.66 (15)	Ni1—N4—C10—C11	177.7 (2)
N4—Ni1—N2—C4	171.40 (15)	C14—N4—C10—C9	174.9 (2)
N1—Ni1—N3—C9	173.64 (18)	Ni1—N4—C10—C9	-6.6 (3)
N2—Ni1—N3—C9	-162.4 (3)	O2—C9—C10—N4	-173.0 (2)
N4—Ni1—N3—C9	-0.38 (18)	N3—C9—C10—N4	6.4 (3)
N1—Ni1—N3—C1	-17.93 (15)	O2—C9—C10—C11	2.8 (4)
N2—Ni1—N3—C1	6.0 (4)	N3—C9—C10—C11	-177.9 (2)
N4—Ni1—N3—C1	168.04 (15)	N4—C10—C11—C12	-0.1 (4)
N3—Ni1—N4—C14	-177.7 (3)	C9—C10—C11—C12	-175.3 (3)
N1—Ni1—N4—C14	157.5 (3)	C10-C11-C12-C13	2.6 (5)
	× /		· /

N2—Ni1—N4—C14	-2.2 (3)	C11—C12—C13—C14	-4.2 (5)
N3—Ni1—N4—C10	4.10 (16)	C10-N4-C14-C13	-0.9 (4)
N1—Ni1—N4—C10	-20.7 (4)	Ni1—N4—C14—C13	-179.0 (2)
N2-Ni1-N4-C10	179.62 (16)	C12—C13—C14—N4	3.4 (5)
C9—N3—C1—C15	80.8 (2)	N3-C1-C15-C20	-161.45 (18)
Ni1—N3—C1—C15	-87.42 (17)	C2-C1-C15-C20	81.9 (2)
C9—N3—C1—C2	-158.3 (2)	N3-C1-C15-C16	20.7 (3)
Ni1—N3—C1—C2	33.5 (2)	C2-C1-C15-C16	-96.0 (2)
C3—N1—C2—C21	74.7 (3)	C20-C15-C16-C17	1.0 (3)
Ni1—N1—C2—C21	-100.11 (18)	C1-C15-C16-C17	178.9 (2)
C3—N1—C2—C1	-161.6 (2)	C15—C16—C17—C18	-0.5 (3)
Ni1—N1—C2—C1	23.6 (2)	C16—C17—C18—C19	0.1 (4)
N3—C1—C2—N1	-32.9 (2)	C17—C18—C19—C20	-0.3 (4)
C15-C1-C2-N1	88.7 (2)	C18—C19—C20—C15	0.8 (4)
N3—C1—C2—C21	92.29 (19)	C16—C15—C20—C19	-1.2 (3)
C15-C1-C2-C21	-146.11 (17)	C1-C15-C20-C19	-179.2 (2)
C2—N1—C3—O1	1.8 (4)	N1-C2-C21-C26	6.3 (3)
Ni1—N1—C3—O1	176.5 (2)	C1—C2—C21—C26	-113.2 (3)
C2—N1—C3—C4	179.4 (2)	N1—C2—C21—C22	-173.36 (19)
Ni1—N1—C3—C4	-5.8 (3)	C1—C2—C21—C22	67.0 (2)
C8—N2—C4—C5	5.0 (3)	C26—C21—C22—C23	1.1 (4)
Ni1—N2—C4—C5	-179.3 (2)	C2-C21-C22-C23	-179.2 (2)
C8—N2—C4—C3	-174.1 (2)	C21—C22—C23—C24	-1.2 (4)
Ni1—N2—C4—C3	1.6 (2)	C22—C23—C24—C25	-0.4 (5)
O1—C3—C4—C5	1.2 (4)	C23—C24—C25—C26	2.0 (6)
N1—C3—C4—C5	-176.6 (2)	C22—C21—C26—C25	0.6 (4)
O1—C3—C4—N2	-179.7 (2)	C2-C21-C26-C25	-179.2 (3)
N1—C3—C4—N2	2.4 (3)	C24—C25—C26—C21	-2.1 (5)
N2-C4-C5-C6	-5.3 (4)	C28—C27—O3—C27 ⁱ	91.6 (7)
C3—C4—C5—C6	173.7 (3)		
Symmetry codes: (i) $-x+1$, y , $-z+2$.			

Fig. 1